Brief introduction of 602-09-5

602-09-5 [1,1′-Binaphthalene]-2,2′-diol 762831, achiral-catalyst compound, is more and more widely used in various fields.

602-09-5, [1,1′-Binaphthalene]-2,2′-diol is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

20.0 g (69.93 mol) of the starting material SM-0 was dissolved in 300 ml of anhydrous dichloromethane, 27.5 g (0.35 mol) of pyridine and 1.5 g of DMAP were added, 43.4 g (0.15 mol) of a solution of trifluoromethanesulfonic anhydride dissolved in dichloromethane was slowly added dropwise, the reaction was stirred at room temperature for 8 hours, and stirred with 300 ml of water for 30 minutes, the organic phase was collected, concentrated, dried, and purified using silica gel column, concentrated and dried under reduced pressure to obtain 36.5 g of a white solid in a yield of 95% ., 602-09-5

602-09-5 [1,1′-Binaphthalene]-2,2′-diol 762831, achiral-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Shijiazhuang Cheng Zhiyonghua Display Materials Co., Ltd.; Cao Jianhua; Wang Shibo; Dong Liang; Zhang Jianchuan; Sui Yan; Tang Yongshun; (39 pag.)CN108623430; (2018); A;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Simple exploration of 602-09-5

As the paragraph descriping shows that 602-09-5 is playing an increasingly important role.

602-09-5, [1,1′-Binaphthalene]-2,2′-diol is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a 3000 mL four-necked flask, 343.2 g (1.2 mol) of (¡À)-1,1′-bi(2-naphthol), 600 g of toluene, 48 g of N,N-dimethylacetamide, 22.8 g of potassium carbonate and 704 g (3 mol) of ethylene carbonate. After 6 hours of reaction at 100 C, The content of (¡À) -2,2′-bis- (2-hydroxyethoxy) -1,1′-binaphthalene was less than 0.1% by HPLC analysis, and the reaction was stopped. Toluene was added, washed with water to neutrality, and the solid was precipitated by cooling, and put into a 1000 mL oven with spiral stirring. Toluene was added, washed with water to neutrality, and the solid was precipitated by cooling, and put into a 1000 mL oven with spiral stirring. Grinding the dried under vacuum, drying temperature 85 , drying time of 18 hours, to give (¡À) -2,2′- two – (2-hydroxyethoxy) -1,1′-binaphthyl 391.73g, yield 87.19%., 602-09-5

As the paragraph descriping shows that 602-09-5 is playing an increasingly important role.

Reference£º
Patent; Jiangsu Yong Xing Chemical Co., Ltd.; Xu Weihua; Zhao Jinlong; Lu Guoyuan; Zhang Qiang; (15 pag.)CN110483259; (2019); A;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Extracurricular laboratory: Synthetic route of 602-09-5

As the rapid development of chemical substances, we look forward to future research findings about 602-09-5

[1,1′-Binaphthalene]-2,2′-diol, cas is 602-09-5, it is a common heterocyclic compound, the chiral-catalyst compound, its synthesis route is as follows.,602-09-5

In a glass reactor equipped with a stirrer, cooler and thermometer,286 g (1 mol) of (RS) -1,1′-bi-2-naphthol;194 g (2.2 mol) of ethylene carbonate,Charge 15 g of potassium carbonate and 450 g of toluene,The reaction was performed at 110 C. for 10 hours. After diluting the reaction solution by adding 540 g of toluene,The organic solvent layer was washed by adding 290 g of a 10% by mass aqueous sodium hydroxide solution.Subsequently, the washing with water was repeated using 500 g of water until the washed water became neutral. After washing with water, trisodium phosphate dodecahydrate 1. 6 g was added and the mixture was stirred for 30 minutes. Thereafter, the mixture was cooled from 80 C. to 30 C. at a rate of 0.5 C./min, filtered under reduced pressure (50 kPa) and dried,(RS) -2,2′-bis (2-hydroxyethoxy)-1,1′-binaphthalene317 g (yield: 84.5% by mass, purity: 99.6%, D50: 58 mum) of white crystals of the compound were obtained. The phosphorus content in the obtained crystals was 47 mass ppm.

As the rapid development of chemical substances, we look forward to future research findings about 602-09-5

Reference£º
Patent; DKS Co Ltd; Saito, Daisuke; Umeda, Kazutoshi; (9 pag.)JP6615397; (2019); B1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Application of 1121-22-8

As the rapid development of chemical substances, we look forward to future research findings about 1121-22-8

A common heterocyclic compound, the chiral-catalyst compound, name is trans-Cyclohexane-1,2-diamine,cas is 1121-22-8, mainly used in chemical industry, its synthesis route is as follows.,1121-22-8

General procedure: Salen ligands were obtained in the stoichiometric reaction of salicylic aldehyde and trans-1,2-diaminocyclohexane in 96% ethanol solution according to [13c]. Reactions were carried out in 50 ml three-neck round-bottomed flask, equipped with reflux condenser, dropping funnel, magnetic stirrer and heating mantle. The solution of trans-1,2-diaminocyclohexane (0,57 ml, 5 mmol) in EtOH (10 ml) was slowly added to a hot solution of appropriate aldehyde (10 mmol) in EtOH (20 ml). The reaction mixture was heated at reflux for 1.5 h. After cooling to room temperature, the yellow precipitate that formed was filtered off and washed with cold EtOH (5 ml). The ligands were used without further purification. (¡À)-trans-N,N-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclo-hexanediamine (H2salcn(2Bu)) (H2salcn(BuOMe)) Anal. Calc. for C36H54N2O2: C, 79.07%; H, 9.95%; N, 5.12%; C/N = 15.44. Found: C, 78.98%; H, 10.25%; N, 5.17%; C/N = 15.27. 1H-NMR (CDCl3): delta = 13.70 (bs, 2H), 8.29 (s, 2H), 7.29 (d, J = 2.40 Hz, 2H), 6.97 (d, J = 2.30 Hz, 2H), 3.31 (m, 2H), 1.94 (m, 2H), 1.87 (m, 2H), 1.73 (m, 2H), 1.47 (m, 2H), 1.40 (s, 18H), 1.23 (s, 18H). Yield: 2.19 g, 80%, mp = 178-181 C.

As the rapid development of chemical substances, we look forward to future research findings about 1121-22-8

Reference£º
Article; Tomczyk; Nowak; Bukowski; Bester; Urbaniak; Andrijewski; Olejniczak; Electrochimica Acta; vol. 121; (2014); p. 64 – 77;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Application of 23190-16-1

As the rapid development of chemical substances, we look forward to future research findings about 23190-16-1

A common heterocyclic compound, the chiral-catalyst compound, name is (1R,2S)-2-Amino-1,2-diphenylethanol,cas is 23190-16-1, mainly used in chemical industry, its synthesis route is as follows.,23190-16-1

A solution of (Boc)2O (44 mmol) in THF (50ml) was added to the mixture of the amino alcohol (40 mmol) and sodium carbonate (80 mmol) in THF/H2O (1/1, 300 ml) at O0C. The mixture was stirred at O0C for Ih and then at room temperature for another two 2h (TLC was used to monitor the reactions). Water (200 ml) was added to the mixture upon completion. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (200 ml). The combined organic layers was washed with brine (300 ml) and dried with anhydrous MgSO4 for Ih. It was then filtered and the solvent was removed under vacuum to give the product (yield = 90 – 99 %). It was sufficiently pure for the next step. The pure product was obtained by recrystallization from the THF and hexane, or by purification with silica gel chromatography.Example 2.1: Tert-butyl (lS,2R)-2-hydroxy-l,2-diphenylethylcarbamatePh PhBocHN OHYield: 90 %. 1H NMR (CD2Cl2): delta 7.25-7.27 (m, 6H), 7.08-7.1 1 (m, 4H), 5.33 (m, IH), 5.04 (m, IH), 4.92 (b, IH), 2.60 (b, IH), 1.38 (s, 9H).

As the rapid development of chemical substances, we look forward to future research findings about 23190-16-1

Reference£º
Patent; KANATA CHEMICAL TECHNOLOGIES INC.; WO2008/148202; (2008); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Brief introduction of 1121-22-8

1121-22-8, 1121-22-8 trans-Cyclohexane-1,2-diamine 43806, achiral-catalyst compound, is more and more widely used in various fields.

1121-22-8, trans-Cyclohexane-1,2-diamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Aldehyde (2.2 mmol, salicylaldehyde or 4-methoxysalicylaldehyde, 4-diethylamino-2-hydroxy benzaldehyde or 2,4-dihydroxybenzaldehyde) was dissolved in ethanol (30 ml) and stirred at room temperature. To this solution, either ethylene diamine (1 mmol) or trans-1,2-diaminocyclohexane (1 mmol) was added drop-wise under stirring. The immediate appearance of yellow colour indicates the formation of Schiff bases. The solution was allowed to stir for another 6 h at room temperature that produced yellow to light yellow coloured precipitates. The formed precipitate was filtered off, washed with ethanol and dried under vacuum.

1121-22-8, 1121-22-8 trans-Cyclohexane-1,2-diamine 43806, achiral-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Hariharan; Anthony, Savarimuthu Philip; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 136; PC; (2015); p. 1658 – 1665;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Simple exploration of 141556-45-8

141556-45-8, As the paragraph descriping shows that 141556-45-8 is playing an increasingly important role.

141556-45-8, 1,3-Dimesityl-1H-imidazol-3-ium chloride is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Under the protection of nitrogen, to the reaction tube is sequentially added imidazole salt IMes¡¤HCl (1.1mmol), palladium chloride (1.0mmol), potassium carbonate (2.2mmol), tetrahydrofuran (5.0 ml) and isoquinoline (2.0mmol). The mixture is placed in the oil bath heated reaction (80 C) 12 hours. Stopping the reaction, cooling to room temperature, pressure reducing turns on lathe does solvent, rapid column chromatography separation to obtain a yellow solid product 0.0927g, yield 76%.

141556-45-8, As the paragraph descriping shows that 141556-45-8 is playing an increasingly important role.

Reference£º
Patent; Wenzhou University; Shao Lixiong; Lu Jianmei; Liu Feng; (23 pag.)CN106892945; (2017); A;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Application of 6-Bromo-1,2,3,4-tetrahydroquinoline

As the rapid development of chemical substances, we look forward to future research findings about 673-06-3

A common heterocyclic compound, the chiral-catalyst compound, name is D-Phenylalanine,cas is 673-06-3, mainly used in chemical industry, its synthesis route is as follows.,673-06-3

General procedure: Amino acid or peptide (1 mmol) was added with stirring to a solution of guanidine hydrochloride (15 mol%) and di-tert-butyl dicarbonate (2.5-3 mmol) in EtOH (1 mL), at 35-40C. The reaction mixture was continued to stir until a clear solution was obtained. EtOH was evaporated under vacuum and the residue was successively washed with water (2 mL) and hexane or petroleum ether (2 mL) to afford almost pure N-Boc amino acids or N-Boc peptides. If necessary, the crude products could be recrystallized for further purification.

As the rapid development of chemical substances, we look forward to future research findings about 673-06-3

Reference£º
Article; Jahani, Fatemeh; Tajbakhsh, Mahmood; Golchoubian, Hamid; Khaksar, Samad; Tetrahedron Letters; vol. 52; 12; (2011); p. 1260 – 1264;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Application of Ethyl quinuclidine-4-carboxylate

As the rapid development of chemical substances, we look forward to future research findings about 1121-22-8

A common heterocyclic compound, the chiral-catalyst compound, name is trans-Cyclohexane-1,2-diamine,cas is 1121-22-8, mainly used in chemical industry, its synthesis route is as follows.,1121-22-8

Toa solution of trans-1,2-diaminocyclohexane(20.4 mL, 0.170 mol) in N,N-dimethylformamide(82 mL) was added 2-pyridinecarboxaldehyde (35.6 mL, 0.375 mol) with moderateswirling, resulting in moderate warming.After 24 hours, crystals were collected by fitration, rinsed with N,N-dimethylformamide (75 mL) and water(100 mL), and dried in vacuo (trans-N,N?-bis(pyridin-2-ylmethylene)-1,2-diaminocyclohexane, 40.52 g,81.5%, spectra matching those reported).ADDIN EN.CITESchoumacker20031607[1]1607160717Schoumacker,S.Hamelin, O.Pecaut,J.Fontecave,M.CatalyticAsymmetric Sulfoxidation by Chiral Manganese Complexes: Acetylacetonate Anions as ChiralitySwitchesInorg.Chem.Inorg.Chem.8110-8116422003[1] Amixture of trans-N,N?-bis(pyridin-2-ylmethylene)-1,2-diaminocyclohexane (30.13 g,0.1030 mol) and sodium borohydride (12.04 g, 0.3183 mol) in ethanol (95%, 760mL) was stirred vented to an oil bubbler for three days. The mixture was chilled in an ice-water bathfor 1 hour, and hydrochloric acid (12 M, 55 mL) was added in portions, and theresulting solution was confirmed to be acidic.Solvent was removed by rotary evaporation, and the resulting stickysolid was dissolved in water (300 mL) and washed with methylene chloride (3 x175 mL). To the remaining aqueoussolution was added aqueous sodium hydroxide (50% by weight, 30 mL). The resulting mixture was confirmed to bebasic and left at ambient temperature to cool for 30 minutes. It was extracted with methylene chloride (3 x370 mL), and the combined organic extracts were dried for 48 hours overanhydrous sodium sulfate (15 g) and anhydrous potassium carbonate (15 g). Solids were removed by filtration, andsolvent was removed by rotary evaporation.The resulting oil was dried on a Schlenk line and placed in a -20 Cfreezer overnight. Upon warming to roomtemperature, it solidified to a waxy yellow solid (trans-N,N?-bis(pyridin-2-ylmethyl)-1,2-diaminocyclohexane,picchxn, 1, 29.88 g, 97.87%, spectramatching those reported). ADDIN EN.CITESchoumacker20031607[1]1607160717Schoumacker,S.Hamelin, O.Pecaut,J.Fontecave,M.CatalyticAsymmetric Sulfoxidation by Chiral Manganese Complexes: Acetylacetonate Anions as ChiralitySwitchesInorg.Chem.Inorg.Chem.8110-8116422003[1] trans-N,N?-bis(pyridin-2-ylmethyl)-1,2-diaminocyclohexane is typicallythe only product observed in the spectra of isolated material However, it may befurther purified by recrystallization of the tetrahydrochloride salt frommethanol/isopropanol.

As the rapid development of chemical substances, we look forward to future research findings about 1121-22-8

Reference£º
Article; Bennov, Rachel R.; Berko, David A.; Burgess, Samantha A.; Dimeglio, John L.; Kalman, Steven E.; Ludlum, Jeffrey M.; Nash, Bradley W.; Palomaki, Peter K.B.; Perlow, Daniel B.; Rubin, Jacob A.; Saunders, Janet E.; Scarselletta, Sarah V.; Kastner, Margaret E.; Pike, Robert D.; Sabat, Michal; Keane, Joseph M.; Inorganica Chimica Acta; vol. 438; (2015); p. 64 – 75;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Downstream synthetic route of 673-06-3

The synthetic route of 673-06-3 has been constantly updated, and we look forward to future research findings.

673-06-3, D-Phenylalanine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

673-06-3, General procedure: L-Phenylalanine (1.5 g, 9.08 mmol, 1eq.) was suspended in 30 mL of NaOH (0.39 g, 9.98 mmol, 1.1 eq.) solution and the reaction mixture was diluted with tert-butanol. To this, di-tert-butyl pyrocarbonate (2.63 mL, 10.89 mmol, 1.2 eq) was added drop-wise with constant stirring. Reaction mixture was stirred at room temperature for overnight. Next day the reaction mixture was extracted with pentane and the organic phase is extracted with saturated NaHCO3 solution (315 mL). The combined aqueous layer was acidified to pH 2 with 1N HCl solution. The acidified layer was extracted with ethyl acetate (3×25 mL) and washed with brine solution (2×15 mL). The organic layer was dried over anhydrous sodium sulphate and concentrated to give the product (2.1 g, 87.5 % yield)

The synthetic route of 673-06-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Kumar, Vikas; Krishna, K. Vijaya; Khanna, Shruti; Joshi, Khashti Ballabh; Tetrahedron; vol. 72; 35; (2016); p. 5369 – 5376;,
Chiral Catalysts
Chiral catalysts – SlideShare