A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 21436-03-3, Name is (1S,2S)-Cyclohexane-1,2-diamine, molecular formula is C6H14N2. In a Article£¬once mentioned of 21436-03-3, Product Details of 21436-03-3
?Backdoor Induction? of Chirality: Trans-1,2-cyclohexanediamine as Key Building Block for Asymmetric Hydrogenation Catalysts
This paper describes the synthesis and characterization of 21 chiral monodentate ligands L, assembled of three building blocks utilizing amide bonds: a metal binding triphenylphosphine, a chiral cyclic diamine and an additional substituent for fine-tuning the steric and/or electronic properties. Cis square-planar metal complexes of RhI and PtII with ML2 stoichiometry have been prepared and characterized by spectroscopic methods (NMR, IR, UV-Vis, CD) and DFT calculations. A key feature of the metal complexes is a prochiral metal coordination sphere and ?backdoor induction? of chirality from a distant chiral source via an outer-coordination sphere, well-defined by aromatic stacking and hydrogen-bonding. The rhodium complexes were used as catalysts in asymmetric hydrogenation of alpha,beta-dehydroamino acids with excellent yield and selectivity (up to 97 % ee), strongly supporting the ?backdoor induction? hypothesis.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Product Details of 21436-03-3. In my other articles, you can also check out more blogs about 21436-03-3
Reference£º
Chiral Catalysts,
Chiral catalysts – SlideShare