The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.21436-03-3, Name is (1S,2S)-Cyclohexane-1,2-diamine, molecular formula is C6H14N2. In a Article£¬once mentioned of 21436-03-3, category: chiral-catalyst
Manganese-salen catalyzed oxidative benzylic chlorination
Abstract: Metalloporphyrins are well-known to serve as the model for mimicking reactivities exhibited by cytochrome P450 hydroxylase. Recent developments on selective C?H halogenation using Mn-porphyrins provided the way for understanding the reactivity as well as mechanism of different halogenase enzymes. In this report, we demonstrated a method for benzylic C?H chlorination using easily prepared Mn(salen) complex as the catalyst, which shows a complementary reactivity of Mn-porphyrins. Here, NaOCl has been used as a chlorinating source as well as the oxidant. Efforts towards understanding the mechanism suggested the formation of the high-valent Mn(V)=O species which is believed to be the key intermediate to conduct this transformation. Graphical abstract: SYNOPSIS Mn(salen)-catalyzed selective benzylic chlorination protocol has been developed using aqueous NaOCl solution. Reactions proceeded efficiently at room temperature and displayed good functional group tolerance. The mechanistic investigation demonstrated that Mn (V) = O species is likely to be the key intermediate which is responsible to generate benzylic radical. EPR and ESI-MS studies confirmed the in situ formation of Mn(IV)-species.[Figure not available: see fulltext.].
Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.category: chiral-catalyst, you can also check out more blogs about21436-03-3
Reference£º
Chiral Catalysts,
Chiral catalysts – SlideShare