Downstream synthetic route of [1,1′-Binaphthalene]-2,2′-diamine

With the synthetic route has been constantly updated, we look forward to future research findings about [1,1′-Binaphthalene]-2,2′-diamine,belong chiral-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO340,mainly used in chemical industry, its synthesis route is as follows.,4488-22-6

In addition to the foregoing, numerous other chromatographic separations using a column bonded with a CSP including a derivatized cyclofructan residue were carried out. Tables 5-9 list some additional examples of chromatographic separations using a column bonded with a CSP of the present invention. AU examples of chromatographic separations using columns bonded with CSPs of the present invention were carried out using the following experimental conditions and procedures.|0132| The high performance liquid chromatography (HPLC) column packing system was composed of an air driven fluid pump (HASKEL, DSTV- 122), an air compressor, a pressure regulator, a low pressure gauge, two high-pressure gauges (10,000 and 6,000 psi), a slurry chamber, check valves, and tubings. The CSPs were slurry packed into a 25 cm x 0.46 cm (inner diameter, I. D.) stainless steel column.|0133| The HPLC system was an Agilent 1 100 system (Agilent Technologies, Palo Alto,CA), which consisted of a diode array detector, an autosampler, a binary pump, a temperature- controlled column chamber, and Chemstation software. All chiral analytes were dissolved in ethanol, methanol, or other appropriate mobile phases, as indicated. For the LC analysis, the injection volume and flow rate were 5 muL and 1 mL/min, respectively. Separations were carried out at room temperature (~20 0C) if not specified otherwise. The wavelengths of UV detection were 195, 200, 210, and 254 nm. The mobile phase was degassed by ultrasonication under vacuum for 5 min. Each sample was analyzed in duplicate. Three operation modes (the normal phase mode, polar organic mode, and reversed phase mode) were tested, unless indicated otherwise. In the normal phase mode, heptane with ethanol or isopropanol was used as the mobile phase. In some cases, trifluoroacetic acid (TFA) was used as an additive, as indicated. The mobile phase of the polar organic mode was composed of acetonitrile/methanol and small amounts of acetic acid and triethylamine. Water/acetonitrile or acetonitrile/acetate buffer (20 mM, pH = 4.1 ) was used as the mobile phase in the reversed-phase mode.|0134| Two different supercritical fluid chromatographic instruments were used. One was a Berger SFC unit with an FCM 1200 flow control module, a TCM 2100 thermal column module, a dual pump control module, and a column selection valve. The flow rate was 4 mL/min. The cosolvent was composed of methanol/ethanol/isopropanol = 1 : 1 : 1 and 0.2% diethylamine (DEA). The gradient mobile phase composition was 5% cosolvent hold during 0- 0.6 min, 5-60% during 0.6-4.3 min, 60% hold during 4.3-6.3 min, 60%-5% during 6.3-6.9 min, and 5% hold during 6.9-8.0 min. The other SFC system was a Jasco (MD, USA) system comprised of an autosampler unit (AS-2059-SF Plus), a dual pump module (PU-2086 Plus), a column thermostat module (CO-2060 Plus), a UV/Vis detector (UV-2075 Plus), and a back pressure regulator module (SCH-Vch-BP). Unless otherwise specified, the mobile phase was composed of CCVmethanol (0.1 % TFA or 0.1% diethylamine). The flow rate was 3 mL/min.|0135| For the calculations of chromatographic data, the “dead time” to was determined by the peak of the refractive index change due to the sample solvent or determined by injecting l ,3,5-tri-/e/-/-butylbenzene in the normal phase mode.

With the synthetic route has been constantly updated, we look forward to future research findings about [1,1′-Binaphthalene]-2,2′-diamine,belong chiral-catalyst compound

Reference£º
Patent; BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM; ARMSTRONG, Daniel, W.; PING, Sun; BREITBACH, Zachary, S.; WANG, Chunlei; WO2010/148191; (2010); A2;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

New learning discoveries about 4488-22-6

With the rapid development of chemical substances, we look forward to future research findings about [1,1′-Binaphthalene]-2,2′-diamine

[1,1′-Binaphthalene]-2,2′-diamine, cas is 4488-22-6, it is a common heterocyclic compound, the chiral-catalyst compound, its synthesis route is as follows.,4488-22-6

General procedure: To a solution of 2 (142 mg, 0.5 mmol) in pyridine (1 mL)/DCM (4 mL) was added mesylchloride (126 mg, 1.1 mmol) and the orange mixture was stirred at r.t. After 24 h, a second portion of mesylchloride was added (126 mg, 1.1 mmol) and stirring was continued. After complete conversion (TLC), the reaction was acidified (HCl, 1 M) and sufficiently extracted with DCM. The organic phase was dried (MgSO4) and the solvent removed under reduced pressure. The crude mixture was purified by MPLC (EtOAc (30?50%)/heptane) to yield 223 mg (quant.) of 3a as a mixture of tautomers; m.p.: 221-222 C.

With the rapid development of chemical substances, we look forward to future research findings about [1,1′-Binaphthalene]-2,2′-diamine

Reference£º
Article; Lemmerer, Miran; Abraham, Michael; Brutiu, Bogdan R.; Roller, Alexander; Widhalm, Michael; Molecules; vol. 24; 17; (2019);,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Simple exploration of 4488-22-6

4488-22-6, As the paragraph descriping shows that 4488-22-6 is playing an increasingly important role.

4488-22-6, [1,1′-Binaphthalene]-2,2′-diamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of 2 (1.421 g, 5 mmol) in benzene (5 mL) was added allylalcohol (0.850 mL, 12.5 mmol) and dried molsieve (1 g, 4 A) and the mixture was degassed. Subsequently, Ti(i-OPr)4, (710 mg, 740 muL, 2.5 mmol), PPh3 (105 mg, 0.4 mmol), and Pd(OAc)2 (22.5 mg, 0.1 mmol) was added and the reaction was stirred under Ar at 50 C. The conversion was monitored by TLC. After extractive work-up with DCM/water, drying (MgSO4), and evaporation, the crude product was purified by chromatography in EtOAc (5?20%)/heptane to afford 1.55 g (85%) of 6 as a slightly brown crystaline solid; m.p.: 95-99 C. 1H-NMR delta = 7.87 (d, J = 9.0 Hz, 2H); 7.78 (dm, J = 7.7 Hz, 2H); 7.21 (d, J = 9.1 Hz, 2H); 7.14-7.22 (m, 4H); 6.99 (dm, J = 7.9 Hz, 2H); 5.77 (ddm, J = 17.3, 10.3 Hz, 2H); 5.12 (dm, J = 17.3 Hz, 2H); 5.02 (dm, J = 10.3 Hz, 2H); 3.92 (br.s, 2H); 3.77-3.86 (br.m, 4H). 13C-NMR delta = 144.2 (C); 135.7 (CH); 133.9 (C); 129.5 (CH); 128.1 (CH); 127.7 (C); 126.7 (CH); 123.9 (CH); 122.0 (CH); 115.6 (CH2); 114.2 (CH); 112.0 (C); 46.1 (CH2). HRMS calcd for C26H25N2 [M + H]+: 365.2018; found: 365.2011.

4488-22-6, As the paragraph descriping shows that 4488-22-6 is playing an increasingly important role.

Reference£º
Article; Lemmerer, Miran; Abraham, Michael; Brutiu, Bogdan R.; Roller, Alexander; Widhalm, Michael; Molecules; vol. 24; 17; (2019);,
Chiral Catalysts
Chiral catalysts – SlideShare

 

The important role of 4488-22-6

With the complex challenges of chemical substances, we look forward to future research findings about [1,1′-Binaphthalene]-2,2′-diamine

Name is [1,1′-Binaphthalene]-2,2′-diamine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 4488-22-6, its synthesis route is as follows.,4488-22-6

General procedure: In a typical experiment Pd(OAc)2 (5.6 mg, 0.025 mmol), triphenylphosphine (13.2 mg, 0.05 mmol), 17-iodo-5alpha-androsta-16-ene 1 (0.5 mmol), 2,2′-diamino-1,1′-binaphthalene 2 (varied from 1.0 mmol to 0.125 mmol) and triethylamine (0.5 mL) were dissolved in DMF (10 mL) under argon in a 100 mL three-necked flask equipped with a gas inlet, reflux condenser with a balloon (filled with argon) at the top. The atmosphere was changed to carbon monoxide. The reaction was conducted for the given reaction time upon stirring at 50 C and analysed by TLC. The mixture was then concentrated and evaporated to dryness. The residue was dissolved in chloroform (20 mL) and washed with water (3 20 mL), 5% hydrochloric acid (20 mL), saturated NaHCO3 (20 mL) and brine (20 mL). The organic phase was dried over Na2SO4, filtered and evaporated to give a solid material. All compounds were subjected to column chromatography (Silicagel 60 (Merck), 0.063-0.200 mm), EtOAc/CHCl3 or hexane/CHCl3 (the exact ratios are specified in Section 4.4 for each compound). 4.3. Characterisation of the products (Fig. 3) (Sax)-3: Yield: 410 mg (72%). Off-white yellow solid, mp 137-142 C; [Found: C, 84.55; H, 7.65; N, 4.70; C40H44N2O requires C,84.46; H, 7.80; N, 4.93]; Rf (5% EtOAc/CHCl3) 0.68. 1H NMR (CDCl3) delta: 8.94 (1H, d, 9.0 Hz, H-30), 8.03 (1H, d, 9.0 Hz, H-40), 7.94 (1H, d,8.2 Hz, H-50), 7.87 (1H, d, 8.5 Hz, H-300), 7.82 (1H, d, 7.5 Hz, H-400), 7.43 (1H, dt, 6.3 Hz, 1.6 Hz, H-60), 7.35 (1H, s, NH), 7.31 (1H, dt,8.5 Hz, 0.8 Hz, H-70), 7.29-7.26 (2H, m, H-600 , H-600), 7.23 (1H, dt,6.8 Hz, 1.1 Hz, H-700), 7.16 (1H, d, 8.7 Hz, H-80), 6.96 (1H, d, 8.2 Hz,H-800), 6.21 (1H, dd, 2.9 Hz, 1.5 Hz, H-16), 3.69 (2H, s, NH2), 2.05 (1H, ddd, 16.7 Hz, 6.5 Hz, 3.4 Hz, 15-CHaHb), 1.78 (1H, ddd,16.7 Hz, 11.9 Hz, 1.4 Hz, 15-CHaHb), 1.07-0.54 (23H, m, skeleton protons), 0.78 (3H, s, 19-CH3), 0.62 (3H, s, 18-CH3). 13C NMR (CDCl3) delta: 163.6, 150.4, 143.0, 140.0, 135.7, 133.8, 132.5. 131.1, 130.3, 129.3, 128.3, 128.2, 128.1, 127.5, 126.8, 125.3, 124.9, 123.6, 122.8, 120.4, 119.7, 118.1, 110.5, 56.8, 54.7, 47.2, 45.3, 38.4, 36.3, 34.2, 33.7, 31.8, 31.4, 29.0, 28.8, 26.8, 22.2, 20.5, 16.0, 12.1. IR (KBr, m(cm1)): 3440 (amide-NH), 3398 (NH2), 1665 (CON), 1620 (CC). MS m/z (rel int.): 569.4 (100, (M+H)+), 381 (9), MS/MS m/z (relint.): 551.4 (29), 285.2 (100). [alpha]D20 = 37.1 (c 1.34, CHCl3). (Rax)-3: Yield: 114 mg (20%). Off-white solid substance; [Found:C, 84.30; H, 7.66; N, 4.77; C40H44N2O requires C, 84.46; H, 7.80; N,4.93]; Rf (5% EtOAc/CHCl3) 0.72. 1H NMR (CDCl3) delta: 8.95 (1H, d,9.0 Hz, H-30), 8.03 (1H, d, 9.0 Hz, H-40), 7.93 (1H, d, 7.9 Hz, H-50), 7.87 (1H, d, 8.9 Hz, H-300), 7.82 (1H, d, 7.8 Hz, H-400), 7.43 (1H, dt,6.4 Hz, 1.2 Hz, H-60), 7.36 (1H, s, NH), 7.31 (1H, dt, 8.6 Hz, 0.8 Hz,H-70), 7.29-7.26 (2H, m, H-6”, H”), 7.23 (1H, dt, 6.9 Hz, 1.5 Hz,H-7”), 7.16 (1H, d, 8.5 Hz, H-8′), 6.96 (1H, d, 8.4 Hz, H-8”), 6.21 (1H, dd, 3.1 Hz, 1.5 Hz, H-16), 3.69 (2H, s, NH2), 2.05 (1H, ddd, 16.3 Hz, 6.4 Hz, 3.4 Hz, 15-CHaHb), 1.78 (1H, ddd, 16.6 Hz,11.7 Hz, 2.0 Hz, 15-CHaHb), 1.07-0.53 (23H, m, skeleton protons), 0.77 (3H, s, 19-CH3), 0.31 (3H, s, 18-CH3). 13C NMR (CDCl3) delta: 163.5, 150.4, 143.1, 140.2, 135.7, 133.8, 132.4, 131.1, 130.3, 129.3, 128.4, 128.3, 128.2, 127.5, 126.8, 125.3, 124.9, 123.6,122.8, 120.4, 119.7, 118.0, 110.6, 56.8, 54.8, 47.2, 45.2, 38.4, 36.3, 34.2, 33.7, 31.7, 31.4, 29.0, 28.8, 26.8, 22.2, 20.5, 15.5, 12.1. IR(KBr, m (cm1)): 3441 (amide-NH), 3396 (NH2), 1665 (CON), 1620 (CC). MS m/z (rel int.): 569.4 (100, (M+H)+), 381 (9), MS/MS m/z (rel int.): 551.4 (29), 285.2 (100). [alpha]D20 = +191.5 (c 0.914, CHCl3). (Sax)-4: Yield: 102 mg (12%). Beige solid substance; [Found: C,84.31; H, 8.35; N, 3.12; C60H72N2O2 requires C, 84.45; H, 8.51; N,3.28]; Rf (10% hexane/CHCl3) 0.69. 1H NMR (CDCl3) alpha: 8.94 (2H, d,9.2 Hz, H-3′), 8.08 (2H, d, 9.2 Hz, H-4′), 7.95 (2H, d, 8.2 Hz, H-5′),7.46 (2H, dt, 7.2 Hz, 0.9 Hz, H-6′), 7.35 (2H, dt, 7.2 Hz, 0.9 Hz, H-7′), 7.1 (2H, d, 9.3 Hz, H-8′), 7.13 (2H, s, NH), 6.05 (2H, dd, 3.1 Hz, 1.5 Hz, H-16), 2.02 (2H, ddd, 16.8 Hz, 6.4 Hz, 3.1 Hz, 15-CHaHb), 1.88 (2H, dd, 9.9 Hz, 3.1 Hz, 14-CH), 1.75 (2H, ddd, 16.8 Hz,11.7 Hz, 1.5 Hz, 15-CHaHb), 1.69-0.54 (44H, m, skeleton protons), 0.77 (6H, s, 19-CH3), 0.57 (6H, s, 18-CH3). 13C NMR (CDCl3) alpha: 163.6, 150.2, 140.0, 136.0, 135.2, 132.4, 131.3, 130.0, 128.2,127.5, 125.3, 124.9, 120.5, 118.1, 56.6, 54.8, 47.2, 45.4, 38.4, 36.3, 34.2, 33.6, 31.7, 31.4, 29.0, 28.8, 26.8, 22.1, 20.5, 16.1, 12.1. IR (KBr, m (cm1)): 3408 (amide-NH), 1677 (CON), 1621 (CC). MS m/z (rel int.): 853.6 ((M+H)+); 875.6 ((M+Na)+), 891.5 ((M+K)+). [alpha]D20 = +12.0 (c 0.418, CHCl3). (Rax)-4: Yield: 85 mg (10%). Beige solid substance; [Found: C,84.28; H, 8.30; N, 3.06; C60H72N2O2 requires C, 84.45; H, 8.51; N,3.28]; Rf (10% hexane/CHCl3) 0.74. 1H NMR (CDCl3) alpha: 8.95 (2H, d,9.0 Hz, H-3′), 8.08 (2H, d, 9.0 Hz, H-4′), 7.96 (2H, d, 7.8 Hz, H-5′), 7.46 (2H, dt, 7.8 Hz, 0.9 Hz, H-6’…

With the complex challenges of chemical substances, we look forward to future research findings about [1,1′-Binaphthalene]-2,2′-diamine

Reference£º
Article; Mikle, Gbor; Boros, Borbla; Kollr, Lszl; Tetrahedron Asymmetry; vol. 25; 23; (2014); p. 1527 – 1531;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

New learning discoveries about 4488-22-6

4488-22-6, The synthetic route of 4488-22-6 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4488-22-6,[1,1′-Binaphthalene]-2,2′-diamine,as a common compound, the synthetic route is as follows.

To a mixture of BINAM (852 mg, 3.0 mmol) and HOAc (1.8 Ml, 30mmol) was added acetic anhydride (312 muL, 3.3 mmol), and the solution was stirred at room temperature overnight. NaOH was added until pH > 7 to quench the reaction, and the solution was extracted with DCM (15 mL¡Á 3). The combined organic extracts were dried (MgSO4) and concentrated. The residue was purified by column chromatography on silica gel using hexane-EtOAc as the eluent, to give A-1; yield: 880 mg (89%).

4488-22-6, The synthetic route of 4488-22-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Zhang, Yu; Mao, Mao; Ji, Yi-Gang; Zhu, Jie; Wu, Lei; Tetrahedron Letters; vol. 57; 3; (2016); p. 329 – 332;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Analyzing the synthesis route of 4488-22-6

Big data shows that 4488-22-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4488-22-6,[1,1′-Binaphthalene]-2,2′-diamine,as a common compound, the synthetic route is as follows.

Racemic 1,1?-binaphthalenyl-2,2?-diamine (2.84 g, 10 mmol) was dissolved in freshly distilled No.7 acetonitrile (60 mL), then No.8 potassium carbonate (13.82 g, 100 mmol) and No.9 potassium iodide (1.33 g, 8.0 mmol) were added. The reaction mixture was heated to reflux under nitrogen atmosphere. Then No.10 ethyl bromoacetate (8.35 g, 50 mmol) was added dropwise and the reaction mixture was refluxed for 72 h. The mixture was then cooled, diluted with water (200 mL) and extracted with ethyl acetate (3 ¡Á 60 mL). The combined organic layer was washed with water (60 mL), dried with MgSO4, and then filtered and evaporated under reduced pressure to remove the solvent. The residue was purified by flash chromatography on silica using No.11 ethyl acetate-petroleum ether (v/v 1:6) as eluent to give light yellow No.12 solid. (yield 54%): 1H NMR (500 MHz, DMSO-d6): 7.86-7.90 (m, 4H), 6.90-7.34 (m, 8H), 3.68-3.85 (m, 16H), 1.02 (t, 12H, J = 7.1 Hz). (0006) A mixture of above resulted solid product (3.15 g, 5 mmol), ethanol (50 mL) and 2 M aqueous solution of NaOH (8 mL) was refluxed under nitrogen atmosphere for 24 h. The solution was then evaporated to remove most solvent, and then cooled in ice-water, 3 M hydrochloric acid was added until pH 3-4. The crude product was extracted with ethyl acetate (2 ¡Á 60 mL). The organic layers were combined and washed with brine (80 mL), dried with Na2SO4, and filtered. The solvent was then removed under reduced pressure. The residue was purified by flash chromatography on silica using ethyl acetate as eluent, from which a yellowish solid of H4L ligand was collected in 76% yield. Mp: 172-173 C; 1H NMR (500 MHz, DMSO-d6) 7.91 (d, 2H, J = 9.0 Hz), 7.86 (d, 2H, J = 8.0 Hz), 7.42 (d, 2H, J = 8.0 Hz), 7.31 (t, 2H, J = 8.0 Hz); 7.19 (t, 2H, J = 8.0 Hz); 6.88 (d, 2H, J = 8.6 Hz); 3.66 (s, 8H); 13C NMR (125.77 MHz, DMSO-d6):172.67, 147.89, 134.27, 130.18, 128.89, 128.38, 126.85, 125.10, 124.47, 124.16, 123.24, 53.13; IR (KBr, cm-1), 3418 (w), 3056 (w), 2929 (m), 1719 (s), 1619 (m), 1594 (m), 1507 (s), 1407 (w), 1375 (w), 1211 (s), 969 (s), 816 (s), 750 (s); Anal. Calc. for C28H24N2O8: C, 65.11; H, 4.68; N, 5.42. Found: C, 65.29; H, 4.53; N, 5.36%., 4488-22-6

Big data shows that 4488-22-6 is playing an increasingly important role.

Reference£º
Article; Huang, Wan-Yun; Chen, Zi-Lu; Zou, Hua-Hong; Liu, Dong-Cheng; Liang, Fu-Pei; Polyhedron; vol. 50; 1; (2013); p. 1 – 9;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Brief introduction of 4488-22-6

The synthetic route of 4488-22-6 has been constantly updated, and we look forward to future research findings.

4488-22-6, [1,1′-Binaphthalene]-2,2′-diamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of BINAM (148 mg, 0. 5 mmol) in THF (anhydrous, 10 mL) was added dropwise 2.5 M n-BuLi in cyclohexane (0.56 mL, 1.4 mmol) at -40oC over 40 min and the reaction mixture was stirred for 1 h. The chlorodiphenylphosphine (440 mg, 1.8 mmol) was added and the reaction was stirred for a further 10 h at -40oC to room temperature. Then, the reaction was quenched with saturated sodium bicarbonate and the mixture was dissolved in little water and extracted with EtOAc (15 mL ¡Á 3). The combined organic extracts were dried (MgSO4)and concentrated. The residue was purified by column chromatography on silica gel using PE-EtOAc as the eluent, to give A-3; yield: 255 mg (67%);, 4488-22-6

The synthetic route of 4488-22-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Zhang, Yu; Mao, Mao; Ji, Yi-Gang; Zhu, Jie; Wu, Lei; Tetrahedron Letters; vol. 57; 3; (2016); p. 329 – 332;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

The important role of [1,1′-Binaphthalene]-2,2′-diamine

With the complex challenges of chemical substances, we look forward to future research findings about [1,1′-Binaphthalene]-2,2′-diamine

Name is [1,1′-Binaphthalene]-2,2′-diamine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 4488-22-6, its synthesis route is as follows.,4488-22-6

General procedure: In a typical experiment Pd(OAc)2 (5.6 mg, 0.025 mmol), triphenylphosphine (13.2 mg, 0.05 mmol), 17-iodo-5alpha-androsta-16-ene 1 (0.5 mmol), 2,2′-diamino-1,1′-binaphthalene 2 (varied from 1.0 mmol to 0.125 mmol) and triethylamine (0.5 mL) were dissolved in DMF (10 mL) under argon in a 100 mL three-necked flask equipped with a gas inlet, reflux condenser with a balloon (filled with argon) at the top. The atmosphere was changed to carbon monoxide. The reaction was conducted for the given reaction time upon stirring at 50 C and analysed by TLC. The mixture was then concentrated and evaporated to dryness. The residue was dissolved in chloroform (20 mL) and washed with water (3 20 mL), 5% hydrochloric acid (20 mL), saturated NaHCO3 (20 mL) and brine (20 mL). The organic phase was dried over Na2SO4, filtered and evaporated to give a solid material. All compounds were subjected to column chromatography (Silicagel 60 (Merck), 0.063-0.200 mm), EtOAc/CHCl3 or hexane/CHCl3 (the exact ratios are specified in Section 4.4 for each compound). 4.3. Characterisation of the products (Fig. 3) (Sax)-3: Yield: 410 mg (72%). Off-white yellow solid, mp 137-142 C; [Found: C, 84.55; H, 7.65; N, 4.70; C40H44N2O requires C,84.46; H, 7.80; N, 4.93]; Rf (5% EtOAc/CHCl3) 0.68. 1H NMR (CDCl3) delta: 8.94 (1H, d, 9.0 Hz, H-30), 8.03 (1H, d, 9.0 Hz, H-40), 7.94 (1H, d,8.2 Hz, H-50), 7.87 (1H, d, 8.5 Hz, H-300), 7.82 (1H, d, 7.5 Hz, H-400), 7.43 (1H, dt, 6.3 Hz, 1.6 Hz, H-60), 7.35 (1H, s, NH), 7.31 (1H, dt,8.5 Hz, 0.8 Hz, H-70), 7.29-7.26 (2H, m, H-600 , H-600), 7.23 (1H, dt,6.8 Hz, 1.1 Hz, H-700), 7.16 (1H, d, 8.7 Hz, H-80), 6.96 (1H, d, 8.2 Hz,H-800), 6.21 (1H, dd, 2.9 Hz, 1.5 Hz, H-16), 3.69 (2H, s, NH2), 2.05 (1H, ddd, 16.7 Hz, 6.5 Hz, 3.4 Hz, 15-CHaHb), 1.78 (1H, ddd,16.7 Hz, 11.9 Hz, 1.4 Hz, 15-CHaHb), 1.07-0.54 (23H, m, skeleton protons), 0.78 (3H, s, 19-CH3), 0.62 (3H, s, 18-CH3). 13C NMR (CDCl3) delta: 163.6, 150.4, 143.0, 140.0, 135.7, 133.8, 132.5. 131.1, 130.3, 129.3, 128.3, 128.2, 128.1, 127.5, 126.8, 125.3, 124.9, 123.6, 122.8, 120.4, 119.7, 118.1, 110.5, 56.8, 54.7, 47.2, 45.3, 38.4, 36.3, 34.2, 33.7, 31.8, 31.4, 29.0, 28.8, 26.8, 22.2, 20.5, 16.0, 12.1. IR (KBr, m(cm1)): 3440 (amide-NH), 3398 (NH2), 1665 (CON), 1620 (CC). MS m/z (rel int.): 569.4 (100, (M+H)+), 381 (9), MS/MS m/z (relint.): 551.4 (29), 285.2 (100). [alpha]D20 = 37.1 (c 1.34, CHCl3). (Rax)-3: Yield: 114 mg (20%). Off-white solid substance; [Found:C, 84.30; H, 7.66; N, 4.77; C40H44N2O requires C, 84.46; H, 7.80; N,4.93]; Rf (5% EtOAc/CHCl3) 0.72. 1H NMR (CDCl3) delta: 8.95 (1H, d,9.0 Hz, H-30), 8.03 (1H, d, 9.0 Hz, H-40), 7.93 (1H, d, 7.9 Hz, H-50), 7.87 (1H, d, 8.9 Hz, H-300), 7.82 (1H, d, 7.8 Hz, H-400), 7.43 (1H, dt,6.4 Hz, 1.2 Hz, H-60), 7.36 (1H, s, NH), 7.31 (1H, dt, 8.6 Hz, 0.8 Hz,H-70), 7.29-7.26 (2H, m, H-6”, H”), 7.23 (1H, dt, 6.9 Hz, 1.5 Hz,H-7”), 7.16 (1H, d, 8.5 Hz, H-8′), 6.96 (1H, d, 8.4 Hz, H-8”), 6.21 (1H, dd, 3.1 Hz, 1.5 Hz, H-16), 3.69 (2H, s, NH2), 2.05 (1H, ddd, 16.3 Hz, 6.4 Hz, 3.4 Hz, 15-CHaHb), 1.78 (1H, ddd, 16.6 Hz,11.7 Hz, 2.0 Hz, 15-CHaHb), 1.07-0.53 (23H, m, skeleton protons), 0.77 (3H, s, 19-CH3), 0.31 (3H, s, 18-CH3). 13C NMR (CDCl3) delta: 163.5, 150.4, 143.1, 140.2, 135.7, 133.8, 132.4, 131.1, 130.3, 129.3, 128.4, 128.3, 128.2, 127.5, 126.8, 125.3, 124.9, 123.6,122.8, 120.4, 119.7, 118.0, 110.6, 56.8, 54.8, 47.2, 45.2, 38.4, 36.3, 34.2, 33.7, 31.7, 31.4, 29.0, 28.8, 26.8, 22.2, 20.5, 15.5, 12.1. IR(KBr, m (cm1)): 3441 (amide-NH), 3396 (NH2), 1665 (CON), 1620 (CC). MS m/z (rel int.): 569.4 (100, (M+H)+), 381 (9), MS/MS m/z (rel int.): 551.4 (29), 285.2 (100). [alpha]D20 = +191.5 (c 0.914, CHCl3). (Sax)-4: Yield: 102 mg (12%). Beige solid substance; [Found: C,84.31; H, 8.35; N, 3.12; C60H72N2O2 requires C, 84.45; H, 8.51; N,3.28]; Rf (10% hexane/CHCl3) 0.69. 1H NMR (CDCl3) alpha: 8.94 (2H, d,9.2 Hz, H-3′), 8.08 (2H, d, 9.2 Hz, H-4′), 7.95 (2H, d, 8.2 Hz, H-5′),7.46 (2H, dt, 7.2 Hz, 0.9 Hz, H-6′), 7.35 (2H, dt, 7.2 Hz, 0.9 Hz, H-7′), 7.1 (2H, d, 9.3 Hz, H-8′), 7.13 (2H, s, NH), 6.05 (2H, dd, 3.1 Hz, 1.5 Hz, H-16), 2.02 (2H, ddd, 16.8 Hz, 6.4 Hz, 3.1 Hz, 15-CHaHb), 1.88 (2H, dd, 9.9 Hz, 3.1 Hz, 14-CH), 1.75 (2H, ddd, 16.8 Hz,11.7 Hz, 1.5 Hz, 15-CHaHb), 1.69-0.54 (44H, m, skeleton protons), 0.77 (6H, s, 19-CH3), 0.57 (6H, s, 18-CH3). 13C NMR (CDCl3) alpha: 163.6, 150.2, 140.0, 136.0, 135.2, 132.4, 131.3, 130.0, 128.2,127.5, 125.3, 124.9, 120.5, 118.1, 56.6, 54.8, 47.2, 45.4, 38.4, 36.3, 34.2, 33.6, 31.7, 31.4, 29.0, 28.8, 26.8, 22.1, 20.5, 16.1, 12.1. IR (KBr, m (cm1)): 3408 (amide-NH), 1677 (CON), 1621 (CC). MS m/z (rel int.): 853.6 ((M+H)+); 875.6 ((M+Na)+), 891.5 ((M+K)+). [alpha]D20 = +12.0 (c 0.418, CHCl3). (Rax)-4: Yield: 85 mg (10%). Beige solid substance; [Found: C,84.28; H, 8.30; N, 3.06; C60H72N2O2 requires C, 84.45; H, 8.51; N,3.28]; Rf (10% hexane/CHCl3) 0.74. 1H NMR (CDCl3) alpha: 8.95 (2H, d,9.0 Hz, H-3′), 8.08 (2H, d, 9.0 Hz, H-4′), 7.96 (2H, d, 7.8 Hz, H-5′), 7.46 (2H, dt, 7.8 Hz, 0.9 Hz, H-6’…

With the complex challenges of chemical substances, we look forward to future research findings about [1,1′-Binaphthalene]-2,2′-diamine

Reference£º
Article; Mikle, Gbor; Boros, Borbla; Kollr, Lszl; Tetrahedron Asymmetry; vol. 25; 23; (2014); p. 1527 – 1531;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Some tips on [1,1′-Binaphthalene]-2,2′-diamine

With the complex challenges of chemical substances, we look forward to future research findings about 4488-22-6,belong chiral-catalyst compound

As a common heterocyclic compound, it belongs to chiral-catalyst compound, name is [1,1′-Binaphthalene]-2,2′-diamine, and cas is 4488-22-6, its synthesis route is as follows.,4488-22-6

General procedure: To a two-necked round-bottomed flask (50 mL) equipped with a magnetic stir bar, was added biaryldiamine 1 (or 3) (0.1 mmol) under the air. The flask was capped with a rubber septum, evacuated, and refilled with N2 gas for three times. Solvent (10 mL) and 2,6-lutidine (23.5 mg, 0.22 mmol or none) were added to the tube through the septum. To the mixture, was added t-BuOCl (23.8 mg, 0.22 mmol or 43.4 mg, 0.40 mmol) through the septum at the indicated temperature. The resulting solution was stirred for the indicated time (Table 2 in the text) before quenched with aqueous Na2S2O3 solution (1.0 M, 20 mL), and the resulting mixture was extracted with CH2Cl2 (20 mL ¡Á 3). The combined organic extracts were dried over Na2SO4 and concentrated under vacuum to give the crude product. Purification by flash column chromatography on silica gel gave the corresponding 7,8-diaza[5]helicene (for example, compound 2a: 27.2 mg, 97%).

With the complex challenges of chemical substances, we look forward to future research findings about 4488-22-6,belong chiral-catalyst compound

Reference£º
Article; Takeda, Youhei; Okazaki, Masato; Maruoka, Yoshiaki; Minakata, Satoshi; Beilstein Journal of Organic Chemistry; vol. 11; (2015); p. 9 – 15;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Some tips on [1,1′-Binaphthalene]-2,2′-diamine

4488-22-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,4488-22-6 ,[1,1′-Binaphthalene]-2,2′-diamine, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the chiral-catalyst compound, [1,1′-Binaphthalene]-2,2′-diamine, cas is 4488-22-6 its synthesis route is as follows.

The mixture of BINAM (227.2 mg, 0.8 mmol), BoC-D-proline (222.9 mg, 0.73 mmol), EDCI (95.8 mg, 1.45 mmol) and HOBt (196 mg, 1.45 mmol) in DCM (20 mL) was tirred at room temperature for 5 h. The mixture was washed by water (25 mL ¡Á 3), dried (MgSO4) and concentrated. The residue was purified by column chromatography on silica gel using PE-EtOAc as the eluent, to give tert-butyl2-((2′-amino-[1,1′-binaphthalen]-2-yl)carbamoyl)pyrrolidine-1-carboxylate; yield: 202 mg (54%). Then 1.5 ml TFA and 1.5 ml Et3SiH were added to the prepared tert-butyl2-((2′-amino-[1,1′-binaphthalen]-2-yl)carbamoyl)pyrrolidine-1-carboxylate in DCM (2.0 mL) , after stirred for 2 h the residue was added NaOH to adjust pH>7 AND extracted by DCM, then the residue was concentrated and purified by column chromatography on silica gel using PE-EtOAc as the eluent, to give A-4; yield: 121 mg (73%);

4488-22-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,4488-22-6 ,[1,1′-Binaphthalene]-2,2′-diamine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Zhang, Yu; Mao, Mao; Ji, Yi-Gang; Zhu, Jie; Wu, Lei; Tetrahedron Letters; vol. 57; 3; (2016); p. 329 – 332;,
Chiral Catalysts
Chiral catalysts – SlideShare