Brief introduction of 1121-22-8

1121-22-8, 1121-22-8 trans-Cyclohexane-1,2-diamine 43806, achiral-catalyst compound, is more and more widely used in various fields.

1121-22-8, trans-Cyclohexane-1,2-diamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Aryl halide (1.0 equiv) and aliphatic diamines/amino alcohol (2.0 equiv) were taken in a 100 ml round bottom flask along with 100-150 mg of the chitosan copper catalyst in CH3CN (15 ml) solvent. The resultant mixture was heated at reflux for 3-6 h. After completion of the reaction (the complete consumption of starting materials was confirmed by TLC) the reaction mixture was extracted with ethylacetate. The separated organic phase was concentrated to get the gummy liquid product 3. The chitosan copper catalyst was collected by simple decanting off the reaction mixture. The recovered catalyst was then washed thoroughly with ethyl acetate 2-3 times,dried under vacuum at 50C and used for another run.

1121-22-8, 1121-22-8 trans-Cyclohexane-1,2-diamine 43806, achiral-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Bodhak, Chandan; Kundu, Ashis; Pramanik, Animesh; Tetrahedron Letters; vol. 56; 2; (2015); p. 419 – 424;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Some tips on 1121-22-8

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

As a common heterocyclic compound, it belongs to chiral-catalyst compound, name is trans-Cyclohexane-1,2-diamine, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

Into a solution containing 1,12-diisocyanatododecane (5.04 grams, 20 mmol; obtained from Sigma-Aldrich Fine Chemicals) and a 1:1 mixture of hexane and tetrahydrofuran (75 milliliters) stirring at room temperature was added a solution containing triethylene glycol monomethacrylate (4.36 grams, 20 mmol; obtained as CD570 from Sartomer Company Inc., Exton, Pa.) dissolved in a 1:1 mixture of hexane and tetrahydrofuran (25 milliliters), and dibutyltin dilaurate (0.063 grams, 0.1 mmol; obtained from Sigma-Aldrich Fine Chemicals) as the catalyst. The mixture was stirred and heated to an internal temperature of 40 C. The progress of the reaction was monitored by 1H-NMR spectroscopy for consumption of the triethylene glycol monomethacrylate reactant. The mixture was cooled to about 15 C. temperature, after which to this mixture was added dropwise a solution of trans-1,2-diaminocyclohexane (1.14 grams, 10 mmol; obtained as a racemic mixture of (1R,2R) and (1S,2S) stereoisomers from Sigma-Aldrich Fine Chemicals) dissolved in a 1:1 mixture of hexane and tetrahydrofuran (20 milliliters). The reaction mixture was stirred for 1 hour while warming up to room temperature. FTIR spectroscopic analysis of a reaction sample showed little unreacted isocyanate (peak at 2180 cm-1, sample prepared as a KBr pellet). Any residual isocyanate reagent was quenched by addition of methanol (5 milliliters), The reaction mixture was then filtered by vacuum filtration to give 10.11 grams of a solid product as a white powder (96 percent yield). The product was believed to be of the formulae 1H-NMR spectroscopic analysis of the solid was performed in DMSO-d6 (300 MHz) at room temperature (25 C.) and indicated the above structure with the following assigned peaks: 1.10-1.80 ppm (multiplet, 24 H integration, 20 protons from -NH-CH2(CH2)10CH2-NH- portion and 4 methylene protons from the cyclohexane ring portion); 1.90 ppm (singlet, 3 H integration, -(CO)C(CH3)CH2); 2.95 ppm (narrow multiplet, 4 H integration, -NH-CH2(CH2)10CH2-NH-); 3.35 ppm (multiplet, 1 H, cyclohexane ring methine proton); 3.55 ppm (narrow multiplet, 8 H integration, -(CH2-O) protons); 4.07 ppm and 4.27 ppm (broad singlets, each 2 H integration, NH(CO)OCH2CH2O- and -OCH2CH2O(CO)-C(CH3)CH2); 5.70 ppm and 5.88 ppm (broad singlet, each 1 H integration, urea NH protons); 5.70 ppm and 6.18 ppm (sharp singlet, each 1 H integration, terminal vinyl protons -(CO)C(CH3)CH2); 7.15 ppm (broad singlet, 1 H integration, urethane NH proton). Elemental analysis calculated for: C: 57.80%, H: 8.80%, N: 8.99%. Found for: C: 61.39%, H: 9.28%, N: 7.96%.

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Patent; Xerox Corporation; US2006/122415; (2006); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

The important role of D-Phenylalanine

With the complex challenges of chemical substances, we look forward to future research findings about D-Phenylalanine

Name is D-Phenylalanine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 673-06-3, its synthesis route is as follows.,673-06-3

EXAMPLE I Preparation of R-2-bromo-3-phenylpropionic acid 46.0 ml of water was introduced into a 1-litre double-walled glass reactor connected to a cooling medium. 275.5 g of 48% HBr was added. The jacket cooling and stirring were started. Subsequently, 67.7 g of 45% KOH was slowly added. The reaction mixture was cooled to 30-40 C. 45.0 g of D-phenylalanine was added to the reaction mixture. Next, 213 ml of toluene was added to the reaction mixture. The reaction mixture was cooled to 3 C. In 6 hours 95.9 g of NaNO2, a 30% solution in water, was added to the reaction mixture. The temperature was kept at 5 C. After the reaction stirring was continued for 3 hours at 3 C. The reaction mixture was heated to 20 C. Stirring was stopped and the aqueous phase was separated off. Then the toluene phase was extracted twice with 95 ml of water. The reaction mixture was heated to 70 C. and a 100 mbar vacuum was created using a vacuum pump. The water was removed by distillation using a Dean Stark apparatus until the toluene phase was free of water. Yield: 84.0% R-2-bromo-3-phenylpropionic acid in the toluene solution, relative to D-phenylalanine.

With the complex challenges of chemical substances, we look forward to future research findings about D-Phenylalanine

Reference£º
Patent; Lommen, Franciscus Alphons Marie; Koller, Helmut; Scherubl, Herbert; US2003/125575; (2003); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Brief introduction of 673-06-3

673-06-3 D-Phenylalanine 71567, achiral-catalyst compound, is more and more widely used in various fields.

673-06-3, D-Phenylalanine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE I Preparation of R-2-bromo-3-phenylpropionic acid 46.0 ml of water was introduced into a 1-litre double-walled glass reactor connected to a cooling medium. 275.5 g of 48% HBr was added. The jacket cooling and stirring were started. Subsequently, 67.7 g of 45% KOH was slowly added. The reaction mixture was cooled to 30-40 C. 45.0 g of D-phenylalanine was added to the reaction mixture. Next, 213 ml of toluene was added to the reaction mixture. The reaction mixture was cooled to 3 C. In 6 hours 95.9 g of NaNO2, a 30% solution in water, was added to the reaction mixture. The temperature was kept at 5 C. After the reaction stirring was continued for 3 hours at 3 C. The reaction mixture was heated to 20 C. Stirring was stopped and the aqueous phase was separated off. Then the toluene phase was extracted twice with 95 ml of water. The reaction mixture was heated to 70 C. and a 100 mbar vacuum was created using a vacuum pump. The water was removed by distillation using a Dean Stark apparatus until the toluene phase was free of water. Yield: 84.0% R-2-bromo-3-phenylpropionic acid in the toluene solution, relative to D-phenylalanine., 673-06-3

673-06-3 D-Phenylalanine 71567, achiral-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Lommen, Franciscus Alphons Marie; Koller, Helmut; Scherubl, Herbert; US2003/125575; (2003); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

The important role of 1121-22-8

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Name is trans-Cyclohexane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

General procedure: To a solution of the corresponding sulfonyl chloride (26.0 mmol)in 26 mL of dichloromethane at 0 C, was added rapidly propane-1,3-diamine or (rac)-cyclohexane-1,2-diamine (10 eq., 3 M). Themixturewas allowed to reach roomtemperature andwas stirred during10 h. The crude mixture was filtered and the obtained oil was concentratedunder reduced pressure. Then, 10 mL of ice-water were addedto the concentrated mixture and a solid appeared which was filtrated and washed with cool water and dried under vacuum for 12 h.

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Article; Del Solar, Virginia; Quinones-Lombrana, Adolfo; Cabrera, Silvia; Padron, Jose M.; Rios-Luci, Carla; Alvarez-Valdes, Amparo; Navarro-Ranninger, Carmen; Aleman, Jose; Journal of Inorganic Biochemistry; vol. 127; (2013); p. 128 – 140;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Simple exploration of 22795-99-9

As the paragraph descriping shows that 22795-99-9 is playing an increasingly important role.

22795-99-9, (S)-(1-Ethylpyrrolidin-2-yl)methanamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

22795-99-9, General procedure: O-(Benzotriazol-1-yl)-N,N,N?,N?-tetramethyluronium hexafluoro phosphate, (HBTU) (1.2 equivalents) was added to a solution of sulindac (1 equivalent), the appropriate amine (1.5 equivalents) and Et3N (2 equivalents) in dry acetonitrile (10 mL) at room temperature under argon atmosphere. Reaction mixture was stirred at room temperature for 1-2 h. Solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (60-200 mesh) to afford amide in excellent yield.

As the paragraph descriping shows that 22795-99-9 is playing an increasingly important role.

Reference£º
Article; Mathew, Bini; Hobrath, Judith V.; Connelly, Michele C.; Kiplin Guy; Reynolds, Robert C.; Bioorganic and Medicinal Chemistry Letters; vol. 27; 20; (2017); p. 4614 – 4621;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Share a compound : 22795-99-9

22795-99-9 is used more and more widely, we look forward to future research findings about (S)-(1-Ethylpyrrolidin-2-yl)methanamine

(S)-(1-Ethylpyrrolidin-2-yl)methanamine, cas is 22795-99-9, it is a common heterocyclic compound, the chiral-catalyst compound, its synthesis route is as follows.,22795-99-9

To a mixture of cyanuric chloride (0.368 g, 2 mmol) in CH3CN at about -20¡ã C. was added N-phenyl glycinonitrile (0.264 g, 2 mmol) in CH3CN followed by the addition of DIEA (0.35 mL, 2 mmol) and stirred for about 1 hour. The reaction mixture was then stirred at room temperature for about 1 hour. Then, cycloheptylamine (0.25 mL, 2 mmol) and DIEA (0.35 mL, 2 mmol) were added and the reaction mixture was stirred overnight at rt. Then, S-(-)-2-aminomethyl-N-ethyl pyrrolidine (0.29 mL, 2 mmol) and DIEA (0.35 mL, 2 mmol) were added and the reaction mixture was refluxed overnight. The reaction mixture was diluted with ethyl acetate and washed with brine. The organic layer was separated and dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude material was purified by column chromatography eluding with 96:3:1 methylene chloride:methanol:conc. ammonium hydroxide to yield 143, (0.300 g, 33percent) mp 53-55¡ã C.; HPLC: Inertsil ODS-3V C18, 40:30:30 [KH2PO4 (0.01 M, pH 3.2):CH3OH:CH3CN], 264 nm, Rt 6.9 min, 94.1percent purity; MS (ESI): m/z 449 (M+H, 100), 381 (1.2), 353 (16.2), 226 (19.9), 225 (54.3), 212 (20.5), 177 (18.3), 164 (9.6).

22795-99-9 is used more and more widely, we look forward to future research findings about (S)-(1-Ethylpyrrolidin-2-yl)methanamine

Reference£º
Patent; Timmer, Richard T.; Alexander, Christopher W.; Pillarisetti, Sivaram; Saxena, Uday; Yeleswarapu, Koteswar Rao; Pal, Manojit; Reddy, Jangalgar Tirupathy; Krishna Reddy, Velagala Venkata Rama Murali; Sridevi, Bhatlapenumarthy Sesha; Kumar, Potlapally Rajender; Reddy, Gaddam Om; US2004/209881; (2004); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

New learning discoveries about 673-06-3

The synthetic route of 673-06-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.673-06-3,D-Phenylalanine,as a common compound, the synthetic route is as follows.

To a dry flask were added (R) -phenylalanine (4.2 g, 25 mmol) , water (30 mL) , 1, 4-dioxane (30 mL) and sodium bicarbonate (5.1 g, 61 mmol) in turn, After stirring for 10 min, (Boc) 2O (10.1 g, 45.8 mmol) was added. The resulting mixture was stirred at rt for 24 hours. After the reaction was completed, the mixture was concentrated in vacuo to remove the solvent. The residue was diluted with water (20 mL) and EtOAc (100 mL) , and adjusted with HCl (1 M) to pH 6-7. The resulting mixture was stood to separate into layers, the organic layer was washed with saturated aqueous NaCl and dried over anhydrous sodium sulfate, filtered. The filtrate was concentrated in vacuo to remove the solvent to get the title compound as a colorless oil (6.0g, 91%) . MS (ESI, pos. ion) m/z: 288.2 [M+Na] +., 673-06-3

The synthetic route of 673-06-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; SUNSHINE LAKE PHARMA CO., LTD.; LIU, Xinchang; REN, Qingyun; YAN, Guanghua; GOLDMANN, Siegfried; ZHANG, Yingjun; (253 pag.)WO2019/76310; (2019); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

New learning discoveries about 673-06-3

The synthetic route of 673-06-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.673-06-3,D-Phenylalanine,as a common compound, the synthetic route is as follows.

673-06-3, Preparation of R-2-bromo-3-phenylpropionic Acid 46.0 ml water was supplied to a 1-litre double-walled glass reactor connected to a coolant. 275.5 g HBr 48% was added. Jacket cooling and stirring were started. Subsequently 67.7 gram KOH 45% was slowly added. The reaction mixture was cooled to 30-40 C. 45.0 g D-phenylalanine was added to the reaction mixture. Subsequently 213 ml toluene was added to the reaction mixture. The reaction mixture was cooled to 3 C. 95.9 g 30% NaNO2 solution in water was metered into the reaction mixture in 6 hours. The temperature was kept at 5 C. After the reaction stirring was continued for 3 hours at 3 C. The reaction mixture was heated to 20 C. Stirring was stopped and the aqueous phase was separated off. Then the toluene phase was additionally extracted two times with 95 ml water. The reaction mixture was heated to 70 C. and with the aid of a vacuum pump it was brought under a 100 mbar vacuum. Using a Dean-Stark setup the water was distilled off until the toluene phase was water-free. Yield: 84.0% R-2-bromo-3-phenylpropionic acid in the toluene solution, relative to D-phenylalanine.

The synthetic route of 673-06-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Lommen, Franciscus Alphons Marie; Koller, Helmut; Scherubl, Herbert; US2003/120102; (2003); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Some tips on 673-06-3

As the paragraph descriping shows that 673-06-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.673-06-3,D-Phenylalanine,as a common compound, the synthetic route is as follows.

673-06-3, General procedure: D-amino acid (10 mmol) was dissolved in 60 mL of dry methanol. Under an argon atmospherepotassium carbonate (40 mmol) and CuSO4 ¡Á 5H2O (0.1 mmol) were added and the mixture wasstirred for 15 min. 1H-imidazole-1-sulfonyl azide hydrochloride (12 mmol) was added over a periodof 30 min and the resulting mixture was stirred for 17 h at ambient temperature and under an argonatmosphere. Methanol was removed under reduced pressure and 50 mL of water was added to thecrude product. The pH was adjusted to 3 with 1 M HCl and extracted with ethyl acetate (3 ¡Á 40 mL).The organic phase was washed with brine (1 ¡Á 30 mL), dried with Na2SO4 and evaporated underreduced pressure, and the resulting oil residue was purified by flash column chromatography (SiO2)eluting with dichloromethane and methanol with 1% of acetic acid

As the paragraph descriping shows that 673-06-3 is playing an increasingly important role.

Reference£º
Article; ?ula, Ale?; B?dziak, Izabela; Kikelj, Danijel; Ila?, Janez; Marine Drugs; vol. 16; 11; (2018);,
Chiral Catalysts
Chiral catalysts – SlideShare