Some tips on (S)-(1-Ethylpyrrolidin-2-yl)methanamine

With the complex challenges of chemical substances, we look forward to future research findings about 22795-99-9,belong chiral-catalyst compound

As a common heterocyclic compound, it belongs to chiral-catalyst compound, name is (S)-(1-Ethylpyrrolidin-2-yl)methanamine, and cas is 22795-99-9, its synthesis route is as follows.,22795-99-9

In a 100 mL eggplant bottle, 1.22 g of benzaldehyde, 30 mL of anhydrous ethanol,(S) -1-ethyl-2-aminomethyltetrahydropyrroline, and the mixture was heated under reflux for 24 hours.Adding 0.76 g of sodium borohydride, stirring for 3 hours, pouring into water, extracting the organic phase with dichloromethane,Dried over anhydrous magnesium sulfate, and the solvent was removed to obtain a pale yellow viscous liquid.30 mL of absolute ethanol, 0.6 g of paraformaldehyde, 2.06 g of 2,4-di-tert-butylphenol were added, and the mixture was heated under reflux for 12 hours.The crude product was chromatographed on silica gel to give colorless transparent liquid L2 (1.95 g, 44.7percent).

With the complex challenges of chemical substances, we look forward to future research findings about 22795-99-9,belong chiral-catalyst compound

Reference£º
Patent; East China University of Science and Technology; Ma, HaiYan; Wang, haobing; (35 pag.)CN103787943; (2016); B;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Analyzing the synthesis route of 1121-22-8

1121-22-8, 1121-22-8 trans-Cyclohexane-1,2-diamine 43806, achiral-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1121-22-8,trans-Cyclohexane-1,2-diamine,as a common compound, the synthetic route is as follows.

General procedure: To a mortar were added 3,5-di-tert-butyl-2-hydroxybenzaldehyde (0.468 g, 2 mmol) and trans-cyclohexane-1,2-diamine (0.114 g,0.123 mL, 1 mmol), and these were mixed over 10 min. The product was recrystallized (CH2Cl2/EtOH 1:9) to give 1a as a bright yellow solid; yield: 0.487 g (89%).

1121-22-8, 1121-22-8 trans-Cyclohexane-1,2-diamine 43806, achiral-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Civicos, Jose F.; Coimbra, Juliana S. M.; Costa, Paulo R. R.; Synthesis; vol. 49; 17; (2017); p. 3998 – 4006;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Analyzing the synthesis route of 1121-22-8

1121-22-8, 1121-22-8 trans-Cyclohexane-1,2-diamine 43806, achiral-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1121-22-8,trans-Cyclohexane-1,2-diamine,as a common compound, the synthetic route is as follows.

General procedure: Aldehyde (2.2 mmol, salicylaldehyde or 4-methoxysalicylaldehyde, 4-diethylamino-2-hydroxy benzaldehyde or 2,4-dihydroxybenzaldehyde) was dissolved in ethanol (30 ml) and stirred at room temperature. To this solution, either ethylene diamine (1 mmol) or trans-1,2-diaminocyclohexane (1 mmol) was added drop-wise under stirring. The immediate appearance of yellow colour indicates the formation of Schiff bases. The solution was allowed to stir for another 6 h at room temperature that produced yellow to light yellow coloured precipitates. The formed precipitate was filtered off, washed with ethanol and dried under vacuum.

1121-22-8, 1121-22-8 trans-Cyclohexane-1,2-diamine 43806, achiral-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Hariharan; Anthony, Savarimuthu Philip; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 136; PC; (2015); p. 1658 – 1665;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

The important role of 2133-34-8

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Azetidine-2-carboxylic acid

Name is (S)-Azetidine-2-carboxylic acid, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 2133-34-8, its synthesis route is as follows.,2133-34-8

EXAMPLE 3 Methanol (40mL) was added to the (R)-4-phthalimido-2-chlorobutyric acid (5 g) and the mixture was stirred. To the mixture 80% hydrazine hydrate (2.3 g) was added with stirring, and the mixture was stirred at 40C overnight. Water (30 mL) was then added to the mixture with stirring, and 47% sulfuric acid (13 mL) was added. The mixture was stirred at room temperature for 4 hours and the precipitate was filtered out. The filtrate was concentrated under reduced pressure to recover an aqueous solution of (R)-4-amino-2-chlorobutyric acid. A small amount of the solution was sampled to identify the molecular structure by NMR. The analytical data was as follows:1H-NMR (D2O): delta 2.15-2.45 (m,2H), 3.19 (t,2H), 4.45 (t, 1H) The solution was then placed in an ice bath and an aqueous sodium hydroxide solution (400 g/L) was added to the solution in order to adjust the pH of the solution to 2.0. Water was added to the solution to obtain about 130 g of solution. The resultant solution was heated to about 90C with stirring. Magnesium hydroxide (1.0 g) was added to the solution and the solution was stirred for 5 hours to produce an aqueous solution of (S)-azetidine-2-carboxylic acid. A small amount of the solution was sampled to identify the molecular structure by NMR. The analytical data was as follows: 1H-NMR (CD3OD): delta 2.15 (m,1H), 2.58 (m,1H), 3.90 (m,1H), 4.02 (q,1H), 4.60 (t,1H) The solution was spontaneously cooled to room temperature. Sodium carbonate (2.1 g) and DIBOC (4.3 g) were added with stirring and the mixture was further stirred overnight. Hydrochloric acid (6N) was added to the solution in order to adjust the pH of the solution to 2.0. The resultant solution was extracted with ethyl acetate three times. The resultant organic solution was washed with a saturated brine solution and dried with sodium sulfate. The solvent in the mixture was then removed to recover (S)-N-(tert-butoxycarbonyl)azetidine-2-carboxylic acid (2.1 g) (yield 55%, optical purity 89.3 %e.e.). A small amount of the solution was sampled to identify the molecular structure by NMR. The analytical data was as follows:1H-NMR (CDCl3): delta 1.48 (s,9H), 2.40-2.60 (bs,2H), 3.80-4.00 (bs,2H), 4.80 (t,1H)

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Azetidine-2-carboxylic acid

Reference£º
Patent; KANEKA CORPORATION; EP1415985; (2004); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Analyzing the synthesis route of 1121-22-8

1121-22-8 trans-Cyclohexane-1,2-diamine 43806, achiral-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1121-22-8,trans-Cyclohexane-1,2-diamine,as a common compound, the synthetic route is as follows.

General procedure: A solution of phenyl salicylate (2.13 g, 9.9 mmol) in 2-propanol (30 mL) was added to a 2-propanol solution (10 mL) containing 1,2-diamino-2-methylpropane (0.93 g, 10.6 mmol) dropwise with stirring. The mixture was stirred overnight at room temperature. The resulting white precipitate was collected by filtration, washed with 2-propanol and diethyl ether, and dried in vacuo., 1121-22-8

1121-22-8 trans-Cyclohexane-1,2-diamine 43806, achiral-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Mitsuhashi, Ryoji; Suzuki, Takayoshi; Sunatsuki, Yukinari; Kojima, Masaaki; Inorganica Chimica Acta; vol. 399; (2013); p. 131 – 137;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

The important role of 1121-22-8

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Name is trans-Cyclohexane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

It was synthesized from 101.2 mg (62.3 mumol) of the [{RuCl2(dppb)}2-mu-(dppb)] [17] and 15.9 mg (129.2 mumol) of the cis and trans (+-) 1,2-diaminocyclohexane (cydn) in toluene (20 mL) under argon atmosphere. The solution was stirred for 5 h at 30 C and then the volume was reduced under vacuum to 3 mL and diethyl ether (10 mL) was added to obtain a yellow powder. The product was thoroughly washed with diethyl ether (3 * 5 mL). The yield was 96.0 mg (95%). Anal. calc. (found) for C34H42N2Cl2P2Ru: C, 61.19% (60.73); H, 6.26% (6.05); N, 3.48% (3.40); 31P{1H}-NMR (202.46 MHz, CH2Cl2/D2O): delta 45.19 (singlet, dppb), CV (TBAH, 0.1 mol L-1 CH2Cl2, 25 C, scan rate = 0.1 V s-1): Epa = 0.52 V, Epc = 0.40 V, E? = 0.46 V, |Ipa/Ipc| = 1.10. IR {KBr, 1 cm-1}: 3331, 3257 and 3054 (weak, nuN-H), 2931 and 2855 (weak,nualkyl-H), 1988, 1895, 1831, 1744 (very weak, harmonic), 1562 (medium, delta NH2def.), 1482 and 1433 (medium, nuarom.), 1093 and 1023 (strong, nuC-N), 896 and 743(strong, tau NH2), 695 and 512 (very strong, nuRu-P), 290 (medium, nu Ru-Cl). UV/vis (see Fig. 1S) (CH2Cl2, 1.27 104 mol L1), l/nm (epsilon/Lmol1cm1) 322 (4728), 456 (407).

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Article; Nascimento, Rebecca D.; Silva, Andressa K.; Liao, Luciano M.; Deflon, Victor M.; Ueno, Leonardo T.; Dinelli, Luis R.; Bogado, Andre L.; Journal of Molecular Structure; vol. 1151; (2018); p. 277 – 285;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Some tips on (S)-(1-Ethylpyrrolidin-2-yl)methanamine

With the complex challenges of chemical substances, we look forward to future research findings about 22795-99-9,belong chiral-catalyst compound

As a common heterocyclic compound, it belongs to chiral-catalyst compound, name is (S)-(1-Ethylpyrrolidin-2-yl)methanamine, and cas is 22795-99-9, its synthesis route is as follows.,22795-99-9

A mixture of 2-fluoro-5-(1-trityl-1H-benzotriazol-5-yl)-benzaldehyde (368 mg, 0.76 mmol), (S)-(+)-1-ethyl-2-aminomethylpyrrolidine (120 mg, 0.83 mmol) and molecular sieves in 10 mL of methanol was stirred at ambient temperature for 3 h. The mixture was cooled to -78¡ã C., and sodium borohydride (72 mg, 1.9 mmol) was added and the mixture was allowed to warm to room temperature and stirred overnight. The volatiles were removed in vacuo and the residue was diluted with dichloromethane and washed with water. The aqueous phase extracted with dichloromethane, and the combined organic phases were washed with brine, dried over magnesium sulfate, filtered and concentrated to leave the crude product. Chromatography (elution with methanol/dichloromethane) gave 255 mg of product.

With the complex challenges of chemical substances, we look forward to future research findings about 22795-99-9,belong chiral-catalyst compound

Reference£º
Patent; AVENTIS PHARMACEUTICALS INC.; US2008/138413; (2008); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Some tips on 22795-99-9

With the complex challenges of chemical substances, we look forward to future research findings about 22795-99-9,belong chiral-catalyst compound

As a common heterocyclic compound, it belongs to chiral-catalyst compound, name is (S)-(1-Ethylpyrrolidin-2-yl)methanamine, and cas is 22795-99-9, its synthesis route is as follows.,22795-99-9